skip to main content


Search for: All records

Creators/Authors contains: "Barker, Kevin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The increasing size of input graphs for graph neural networks (GNNs) highlights the demand for using multi-GPU platforms. However, existing multi-GPU GNN systems optimize the computation and communication individually based on the conventional practice of scaling dense DNNs. For irregularly sparse and fine-grained GNN workloads, such solutions miss the opportunity to jointly schedule/optimize the computation and communication operations for high-performance delivery. To this end, we propose MGG , a novel system design to accelerate full-graph GNNs on multi-GPU platforms. The core of MGG is its novel dynamic software pipeline to facilitate fine-grained computation-communication overlapping within a GPU kernel. Specifically, MGG introduces GNN-tailored pipeline construction and GPU-aware pipeline mapping to facilitate workload balancing and operation overlapping. MGG also incorporates an intelligent runtime design with analytical modeling and optimization heuristics to dynamically improve the execution performance. Extensive evaluation reveals that MGG outperforms state-of-the-art full-graph GNN systems across various settings: on average 4.41×, 4.81×, and 10.83× faster than DGL, MGG-UVM, and ROC, respectively. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  2. Free, publicly-accessible full text available June 17, 2024
  3. Label Propagation is not only a well-known machine learning algorithm for classification, but it is also an effective method for discovering communities and connected components in networks. We propose a new Direction-Optimizing Label Propagation Algorithm (DOLPA) framework that enhances the performance of the standard Label Propagation Algorithm (LPA), increases its scalability, and extends its versatility and application scope. As a central feature, the DOLPA framework relies on the use of frontiers and alternates between label push and label pull operations to attain high performance. It is formulated in such a way that the same basic algorithm can be used for finding communities or connected components in graphs by only changing the objective function used. Additionally, DOLPA has parameters for tuning the processing order of vertices in a graph to reduce the number of edges visited and improve the quality of solution obtained. We present the design and implementation of the enhanced algorithm as well as our shared-memory parallelization of it using OpenMP. We also present an extensive experimental evaluation of our implementations using the LFR benchmark and real-world networks drawn from various domains. Compared with an implementation of LPA for community detection available in a widely used network analysis software, we achieve at most five times the F-Score while maintaining similar runtime for graphs with overlapping communities. We also compare DOLPA against an implementation of the Louvain method for community detection using the same LFR-graphs and show that DOLPA achieves about three times the F-Score at just 10% of the runtime. For connected component decomposition, our algorithm achieves orders of magnitude speedups over the basic LP-based algorithm on large diameter graphs, up to 13.2 × speedup over the Shiloach-Vishkin algorithm, and up to 1.6 × speedup over Afforest on an Intel Xeon processor using 40 threads. 
    more » « less
  4. Tensor computations present significant performance challenges that impact a wide spectrum of applications. Efforts on improving the performance of tensor computations include exploring data layout, execution scheduling, and parallelism in common tensor kernels. This work presents a benchmark suite for arbitrary-order sparse tensor kernels using state-of-the-art tensor formats: coordinate (COO) and hierarchical coordinate (HiCOO). It demonstrates a set of reference tensor kernel implementations and some observations on Intel CPUs and NVIDIA GPUs. 
    more » « less